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BY THE MOTION OF A CIRCULAR CYLINDER AND A SYMMETRIC WING 
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In a two-layer stably denslty-stratlfled fluid we have experimentally investigated 
the parameters of waves generated at the interface by the uniform horizontal motion of a 
circular cylinder and a symmetric wing profile in the upper layer. The measurements were 
carried out in the range of first Froude numbers I < Fr~10: 

Fr  = UZ(2 + 8)/egR,, (i) 

where U is the velocity of motion of the body; 2R, its maximum transverse dimension; E = 
P2/Pl -- i; Pt, P2, densities of the fluid in the upper and lower layers; and g, accelera- 
tion of gravity. 

The experimental data were compared with the results of calculations based on the linear 
theory of internal waves in an inviscid stratified fluid [1-3]. It was found that the wave- 
lengths are fairly well predicted by this theory. The same result has been obtained in 
earlier papers [4-6]. The calculation of the wave amplitudes within the scope of the theory 
of ideal fluids, on the other hand, yields values that are too low, because the additional 
perturbations associated with friction and the separation of flow from the body are ignored. 

We attach a coordinate system to the body as shown in Fig. 1 (in the case of a circular 
cylinder its origin is situated at the center of the circle). All linear dimensions are re- 
ferred to the characteristic length R of the body; these include the coordinate x, the devi- 
ation ~ of the interface from the rest state, the wavelength L and wave amplitude Nm, the 
thicknesses HI and H2 of the upper and lower fluid layers, the distance h from the x axis 
to the interface, and the wave number K = 2~/Lo 

The experiments were carried out in a closed channel having transparent walls, a length 
of 120 cm~ a width of 20 cm, and a height of 30 cm. The upper layer was tap water, and the 
lower layer a solution of glycerin in water, with a density from 1.005 to 1.015 g/cm s. The 
circular cylinder had a radius R = i cm. The Reynolds number Re = 2RU/u was varied from 
400 to 1500 in the cylinder experiments. The wing had the cross section sh6wn in Fig. I. 
The perturbation induced by it in an ideal fluid was simulated by a combination of a point 
source of strength q placed at the origin and a sink of the same total strength q distrib- 
uted uniformly between points a~ and a2 [7]. In the experiments we used a wing with param- 
eters q/2~RU = 0.5, a:/R = 0.5, a2/R = 10.8, I/2R = 6, and R = 0.5 cm. The Reynolds number 
in these tests was varied from 250 to 800. 

The body was driven into uniform motion and stopped at the end of the path practically 
instantaneously (in comparison with the internal wave period). The lower fluid layer was 
dyed in the experiments. The wave parameters were determined from photographs taken at times 
when the wave pattern was stationary (in the coordinate system attached to the body) and be- 
fore wave reflection could take place at the end walls of the channel. The random errors 
occurring in the determination of the wave parameters in the given tests were estimated ac- 
cording to the values of the coefficient of variation and turned out to be ~ 15%. 

According to the above-indicated theory, the waves at the interface become single- 
harmonic modes for large values of x: 

~1 = ~lm sin (kx -I-- q)). (2) 

Novosibirsk. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, 
No. i, pp. 55-59, January-February, 1980. Original article submitted January 23, 1979. 

50 0021-8944/80/210s �9 1980 Plenum Publishing Corporation 



Fig~ i 

The quantity k in (2) does not depend on h or on the shape of the body. It is determined by 
the dispersion relation [8] 

u ~ _ I P2- o~ (3 )  
gR k PlCth kH 1 ~ P2 cth kH~ ' 

which for large values Of H, and Ha takes the following form on the basis of (i)~ 

L = 2~/k = 2aFr.  (4)  

The corresponding asymptotic expressions of this theory for the amplitudes ~m 
initial phase angles ~, valid for large x, h, H~, and Ha, have the following form for the 
cylindert 

4~k --hh 
~]~=~--~-~e , ~ = 0 ;  

and for the wingt 

where 

and the 

(5) 

2q e--hhVA" q-B'Z , cp=arctg(B/A),  (6) lira = UR(2 ~ e )  

s inka~-  sinkal, coska 2 --coska~ 
A = I - -  k ( % _ a 0  , B =  k ( % _ a l  ) 

The values of x, Hi, and H2, beginning with which expressions (4)-(6) become valid, 
are estimated from the results of numerical calculations performed by V. A. Sukharev accord- 
ing to the method described in [3]. Thus, according to the calculations for a wing with 
Fr = 9, the wavelength determined from the distance between the first and second crests 
(counting from the body) differ only 0.9% from the asymptotic result, while the value of n m 
determined at the first crest differs only 0.3% from the asymptotic value. For Fr = 3 equally 
small deviations occur in the wavelengths and amplitudes from their asymptotic values, be- 
ginning with the second crest. These computational results are consistent in order of mag- 
nitude with the experimental data. 

The values of Ht and Ha were at least equal to 24 in the experiments. The wavelengths 
calculated on the basis of expressions (3) and (4) in this case differ less than 1% from 
one another for Fr = i0. For Fr < i0 the difference is even smaller. The calculations also 
show that the asymptotic expressions (5) and (6) for the wave amplitudes are also applicable 
with good accuracy in the experimental ranges of Fr, Hi, and H2. The values of h at which 
expressions (5) and (6) begin to be valid can be estimated from the experimental data. This 
problem will be discussed more in detail below. 

In tests with miscible fluids a certain smearing of the interface is inevitable. The 
influence of this factor was also investigated by numerical calculations performed on a com- 
puter by Sukharev according to the method of [3]. The function 0(Y) in this case was esti- 
mated in terms of an integral error function with mean value corresponding to y =--h and 
standard deviation o. The influence of smearing of the interface is illustrated in Figs. 
2 and 3, which gives, along with the solid curves corresponding to expressions (4) and (6), 
curves (dashed) obtained by numerical calculations for o/R = 0.167, which is typical of the 
given experiments. 

The most significant difference between the conditions of the experiments and the 
calculations accordingto expressions (3)-(6) is attributable to the viscosity of the real 
fluid. On the one hand, the viscosity causes wave attenuation. This influence of the 
viscosity is manifested only at large distances from the body, and in the present experiments 
fell within the experimental error limits. On the other hand, when a body is towed in a 
viscous fluid, a momentum equal to the viscous friction of the body is imparted to the flow, 
becoming particularly appreciable in the presence of flow separation from the body. This 
viscosity effect is the principal cause of the discrepancy between the calculated and experi- 
mental data for the wave amplitudes. 
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The foregoing is illustrated in Figs. 2-5. 
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Figure 2 gives the wavelength data. The 
numbers 1-3 identify experimental points obtained in tests with a cylinder towed over re- 
spective distances h = 2, 3, 4; the numbers 4-8 refer to a wlng with respective values of 
h = 2, 4, 6, 8, i0. 

The experimental and calculated wave amplitudes generated by the motion of a circular 
cylinder are compared in Fig. 4. In this case the substitution 

2q-e 
= ~ l m h ,  F l = F r / h  

permits the experimental and calculated data for various values of Fr and h to be written 
in the form of functions of a single variable: 

{3e = ~e(F1), ~c = ~c(F1) �9 

However, due to the above-mentioned viscosity effect, the functions B e (upper curve in Flg. 
4) and B c (lower curve) differ considerably fron one another. The fact that the experimental 
points in Fig. 4 fit a single universal curve corroborates the exponential behavior of the 
variables qm as a function of h for a cylinder down to h = 2. 

In the case of a wing profile the exponential dependence of qm on h is corroborated 
in the experiments only for h > i0, i.e., for h roughly greater than I. Consequently, the 
transformation of the function of two variables into a function of a single variable, as is 
also possible'for expression (6), does not impart suitable universality to the experimental 
data over the entire investigated range of h. For a wing profile the experimental wave 
amplitudes are compared with the calculated values in Figs. 3 and 5. Figure 3 gives qm as 
a function of Fr for h = 8, 6, 4 (points 1-3 and curves I-III, respectively), while Fig. 5 
gives nm as a function of h for Fr = 5.34. It is evident from Figs. 3-5 that in the case of 
the poorly streamlined circular cylinder the experimentally obtained wave amplitudes can 
exceed the calculated values by a factor of more than two. The discrepancy between the ex- 
perimental and calculated data for the more streamlined wing profile does not exceed 25%. 
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ONE FORM OF THE EQUATIONS OF HYDRODYNAMICS OF AN IDEAL INCOMPRESSIBLE FLUID 

AND THE VARIATIONAL PRINCIPLE FOR NONSTEADY FLOW WITH A FREE SURFACE 

Yu. I. Badrukhin and V. V. Kuznetsov UDC 532.5.013.2+532.51.511:519.34+532.531 

In the investigation of nonsteady flows having a free surface there are well-known 
difficulties [I] connected with the formulation of the problems in the traditional statements 
of Euler or Lagrange. 

Using the "Clebsch potentials" X, ~, and % one can write the equations for an ideal in- 
compressible fluid in the form [2, 3] 

Ovi/Oxi = O; (1)  
O~t/Ot + viO~/Oxi = O; (2) 

O~/Ot + v~Os = 0,, (3) 

where the velocity components v i are expressed by the equations 

vi = OxlOx~ + ~.O~tlOx~ (i ----- l,~ 2,. 3). (4) 

Here and later in writing the equations we use the rule of summation over double repeated 
("dummy") indices. 

For the pressure p there is the expression 

o~. ~ v~) (i = 1, 2, 3), (5) 
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